训练样本不足时天线分置MIMO雷达贝叶斯自适应检测
CSTR:
作者:
作者单位:

1.武汉工程大学计算机科学与工程学院,湖北武汉 430205 ;2.武汉工程大学智能机器人湖北省重点实验室,湖北武汉 430205 ;3.空军预警学院,湖北武汉 430019

作者简介:

周喆女,1984年生,硕士研究生,研究方向为雷达信号处理和目标检测E-mail:maggiezhouzhe@163.com

通讯作者:

中图分类号:

TN951

基金项目:

国家自然科学基金资助项目(62071482,62471485,62071172);湖北省重点研发计划项目(2022BAA052);湖北三峡实验室开放基金资助项目(SC215001);湖北省教育厅科学技术研究项目(B2022062)


Bayesian adaptive detection for widely distributed MIMO radar with limited training data
Author:
Affiliation:

1.School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430205 , China ; 2.Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430205 , China ; 3.Air Force Early Warning Academy, Wuhan 430019 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在未知杂波环境下,为实现良好的目标检测性能,通常需要大量独立同分布样本,以此精准估计未知杂波的协方差矩阵。但在实际工作场景中,对于配备多通道的雷达系统而言,获取足够数量的独立同分布训练样本颇具挑战。为了解决天线分置多输入多输出(multi ple-input multiple-output,MIMO)雷达在训练数据不足时的目标检测难题,采用贝叶斯理论, 将杂波协方差矩阵建模为逆威沙特分布,并采用广义似然比检测(generalized likelihood ratio test,GLRT)准则、Rao准则和Wald准则设计得到了3种贝叶斯检测器。结果表明,所提出的检测器均能实现在训练样本不足时的目标检测,在3种贝叶斯检测器中,基于GLRT准则得到的检测器的检测性能最优。此外,还得出了影响检测性能的关键物理量。

    Abstract:

    In an unknown clutter environment, in order to achieve satisfactory target detec tion performance, a large number of independent identically distributed (IID) samples are usually required to accurately estimate the covariance matrix of the unknown clutter. However, in actual working scenarios, it is quite challenging for radar systems equipped with multiple channels to obtain a sufficient number of IID training samples. In order to solve the problem of target detection in widely distribubed multiple-input multiple-output (MIMO) radar with insufficient training data, Bayesian theory was adopted and clutter covariance matrix was modeled as an inverse Wishart distribution. Three Bayesian detectors were designed using the generalized likelihood ratio test (GLRT) criterion, Rao criterion, and Wald criterion. The results show that the proposed detectors can all achieve effective target detection with limited training samples, among which, the detector based on the GLRT criterion performs the best. In addition, the key physical quantities that affect the detection performance have also been given.

    参考文献
    相似文献
    引证文献
引用本文

周喆,刘维建,吴云韬,等. 训练样本不足时天线分置MIMO雷达贝叶斯自适应检测[J]. 信息对抗技术,2025, 4(1):61-71

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-20
  • 出版日期:
文章二维码