引用格式:黄中瑞,唐波,史英春.基于期望方向图匹配的 MIMO 雷达恒模发射波形设计算法研究[J]. 信息对抗技术,2022,1(3):86-94.
 [HUANG Zhongrui, TANG Bo, SHI Yingchun. Constant-envelope waveform design for MIMO radar based on the transmit beampattern matching[J]. Information Countermeasure Technology, 2023, 1(3):86-94. (in Chinese)]

基于期望方向图匹配的 MIMO 雷达恒模 发射波形设计算法研究

黄中瑞*,唐 波,史英春

(国防科技大学电子对抗学院,安徽合肥 230037)

摘 要 为提升 MIMO 雷达发射功率利用率,改善对目标的探测性能,研究了期望方向图匹 配下的发射波形设计方法。建立了发射波形恒模约束下的方向图匹配加权优化模型;基于循 环优化和 majorization-minimization(MM)算法对原始非凸优化问题进行求解,通过构造合适 的上界函数,可将原始问题松弛为等式约束下的序列线性规划问题,并能保证算法的收敛性; 由于每一次迭代都能给出子问题的闭式解,因而所提方法的计算复杂度较低;仿真实验表明 了所提方法的有效性。

关键词 MIMO 雷达; 恒模波形设计;发射方向图; MM 算法
中图分类号 TN 958 文献标志码 A 文章编号 2097-163X(2022)03-0086-09
DOI 10.12399/j.issn.2097-163x.2022.03.008

Constant-envelope waveform design for MIMO radar based on the transmit beampattern matching

Huang Zhongrui*, Tang Bo, Shi Yingchun

(College of Electronic Engineering, National University of Defense Technology, Hefei, 230037, China)

Abstract To improve the transmitting power utilization and target detection performance of the multiple-input-multiple-output (MIMO) radar, the problem of waveform design based on transmit beampattern matching is studied in this paper. First, the weighted optimization model of transmit beampattern matching by considering the constant-envelope constraint is constructed. Then, the non-convex optimization problem is solved via using the joint cyclic algorithm (CA) and the majorization-minimization (MM) method. By properly constructing the majorized function, the original problem can be relaxed into sequential linear programming problem with equality constraints, and the convergence property can be guaranteed. The proposed method owing the low computational complexity based on the achieved closed solution at each iteration. Finally, simulation results are presented to verify the efficiency of the proposed method.

Keywords MIMO radar; constant-envelope waveform design; transmit beampattern;

收稿日期:2022-09-23 修回日期:2022-10-15

通信作者:黄中瑞,18756073857@163.com

作者简介:黄中瑞(1988—),男,博士,讲师,研究方向为阵列信号处理、MIMO 雷达信号处理; 唐波(1985—),男,博士,教授, 人选中国科协青年人才托举工程,获安徽省杰出青年科学基金资助,省部级和国防科技大学高层次人才创新工程 培养对象,研究方向为雷达与雷达对抗技术; 史英春(1978—),男,博士,副教授,研究方向为信号处理分析 基金项目:安徽省自然科学基金资助项目(1908085QF252)

87

majorization-minimization algorithm

0 引言

多输入多输出(multiple-input multiple-output,MIMO) 雷达是近年来提出的一种新体制雷 达^[1-2],各个阵元发射波形的独立性使其具备特 殊的波形分集增益,在目标检测、参数估计等方 面^[3-4]具有更加优越的性能,迅速引起了国内外 众多信号处理学者的广泛关注。波形设计[5-6]作 为 MIMO 雷达重要的研究方向,也是其优越性 能够得以发挥的基础。根据应用场景的不同, MIMO 雷达所需的探测波形不同,相应的波形 设计模型也不同,目前常用的设计准则有:输出 信干噪比准则、相关性能准则以及期望方向图 匹配准则等[7-9]。其中,期望方向图匹配准则的 主要设计思想是:促使 MIMO 雷达的发射功率 在目标分布空域进行聚焦,提高接收阵列处数 据的信噪比,为目标检测和角度估计等奠定良 好基础。

在基于期望方向图匹配的发射波形设计方面,常用的方法可以归结为两步法和一步法2类。

两步法首先解决发射方向图匹配下的 MIMO 雷达波形协方差矩阵设计问题^[10],然后利 用已获得的协方差矩阵,求解协方差矩阵匹配下 的发射波形合成问题[11]。对于协方差矩阵设计, 2004年,Fuhrmann 等^[12]推导了 MIMO 雷达发 射方向图的数学模型,分析了发射波形协方差矩 阵与功率空间分布的关系,建立了基于期望方向 图匹配的协方差矩阵优化模型,并利用梯度搜索 方法进行了求解。文献[13]进一步利用超球面坐 标系对协方差矩阵的 Cholesky 因子进行等价表 示,将协方差矩阵的优化转化为对超球面坐标系 中相位的求解,该方法的好处是能用一个无约束 问题等价表示原不等式优化问题,有效降低了问 题的求解难度。对于发射波形合成,可以将协方 差矩阵直接进行特征值分解得到发射波形,但存 在两点不足:一是发射波形的码元长度为固定 值,实际应用时严重受限;二是无法满足阵元的 等功率辐射要求。为此,文献[14]建立了协方差 矩阵匹配下的发射波形优化模型,提出了基于循 环算法(cyclic algorithm, CA)的波形设计方法, 具有较低的计算复杂度。文献[11]进一步扩展了 发射波形的恒模要求,提出了低峰均比约束下的 发射波形设计方法,有效提升了方向图匹配性 能。总体来说,两步法存在误差"累积"效应,在某 些特殊情况下合成的方向图并不能满足实际工 程要求。

一步法也称为直接法[15],该方法直接建立期 望方向图匹配下的发射波形优化模型,并采用一 定的松弛技术或者迭代算法进行近似求解,本文 主要对此问题进行研究。文献[16]研究了基于方 向图匹配的恒模发射波形设计问题,为了抑制干 扰和不同方向目标间的互扰,在优化模型中增加 了空间回波信号的自相关旁瓣电平和互相关电 平约束,并从理论上证明了局部最优点与全局最 优点的关系。利用拟牛顿算法中的 L-BFGS 算法 (limited-memory Broyden-Fletcher-Goldfarb and Shannon algorithm)对优化模型进行了迭代求 解。文献[17]进一步提出了一种连续闭式解 (successive closed forms, SCF)算法,然而由于每 步迭代都涉及高维矩阵的求逆问题,因此该方法 的计算复杂度较大。文献[9]提出了基于交替方 向乘子算法(alternating direction method of multipliers, ADMM), 该方法将恒模约束下的四次优 化问题转化为二次优化问题,推导了增广拉格朗 日问题,并给出了原变量和辅助变量的更新模 型,该方法的优点是收敛速度相对较快,缺点是 人工参数较多,选择比较困难。

本文以期望方向图与合成方向图的匹配误 差为目标函数,建立发射波形恒模约束下的加权 最小二乘优化模型,提出一种快速的发射波形优 化方法。基于循环优化和 MM(majorizationminimization)算法对原始非凸四次方优化模型 进行求解,通过构造合适的上界目标函数,原问 题可转化为系列等式约束下的线性规划问题,而 且每次迭代都具有闭式解,同时 MM 算法能够保 证迭代的收敛性,因此该方法计算复杂度低。另 外,该方法不涉及人工辅助参数的选择问题,因 此比较符合实际工程应用需求。最后,通过仿真 实验验证了本文算法的有效性。

1 信号模型

考虑一相干 MIMO 雷达,阵列为均匀线性

配置, 阵元数目均为 M, 阵元间距为半波长。令 $X = [x_1, x_2, ..., x_M]^T$, 其中, $x_m = [x_m(1), x_m(2), ..., x_m(N)]^T$ 为第 $m(1 \le m \le M)$ 个阵元的发射 序列, $x_m(n)$ 为第 m 个阵元第 $n(1 \le n \le N)$ 个 时刻的基带信号, $(\cdot)^T$ 表示矩阵(向量)的转 置。假设 MIMO 雷达的发射信号为窄带信号, 并且不考虑空间传播的衰减和色散效应,则远 场空间 θ 方向处接收到的 MIMO 雷达发射信 号为:

$$\mathbf{y}(\theta) = \mathbf{a}^{\mathrm{H}}(\theta) \mathbf{X} \tag{1}$$

式中,(•)^H 表示矩阵(向量)的共轭转置, $a(\theta)$ 表 示发射导向矢量,具体表达式为 $a(\theta) = [1,e^{j\pi \sin \theta}, \cdots, e^{j\pi (M-1) \sin \theta}]^{T}$,根据式(1)可以计算发 射信号在方向 θ 的辐射功率为:

$$P(\theta) = E\{\mathbf{y}(\theta)\mathbf{y}^{\mathsf{H}}(\theta)\} = \mathbf{a}^{\mathsf{H}}(\theta)E\{\mathbf{X}\mathbf{X}^{\mathsf{H}}\}\mathbf{a}(\theta) \approx \frac{1}{N}\mathbf{a}^{\mathsf{H}}(\theta)\mathbf{X}\mathbf{X}^{\mathsf{H}}\mathbf{a}(\theta)$$
(2)

式中,*E*{•}表示期望,由于式(2)中的常数因子 1/*N*对后续优化问题的求解没有影响,因此在下 文讨论中将其略去。

通常情况下,MIMO 雷达波形设计应使发射 功率尽可能聚焦在目标分布区域,以改善接收端 回波信号的信噪比(signal to noise ratio,SNR), 从而提升 MIMO 雷达的目标探测性能。本文建 立基于期望发射方向图匹配的 MIMO 雷达发射 波形优化模型为:

$$\begin{cases} \min_{\mathbf{X},a} \sum_{l=1}^{L} \boldsymbol{\omega}_{l} \| \boldsymbol{a}_{l}^{\mathrm{H}} \boldsymbol{X} \boldsymbol{X}^{\mathrm{H}} \boldsymbol{a}_{l} - \alpha \boldsymbol{P}_{l} \|^{2} \\ \text{s. t. } \| \boldsymbol{X}(m,n) \| = 1, \\ m = 1, 2, \cdots, M, \\ n = 1, 2, \cdots, N \end{cases}$$
(3)

式中, $a_i \triangle a(\theta_i), \theta_i$ 为空间角度的离散化值,L为 角度的离散化个数, P_i 为期望方向图的离散值,a为尺度因子,用来缓解期望方向图和实际合成方 向图的模值不匹配问题, ω_i 为第 $l(l=1,2,\dots,L)$ 个角度上匹配误差的加权系数。

为了便于后续处理,对优化模型(3)进行进 一步处理,令 $x = \text{vec}(X), A_i = I_N \otimes a_i$,其中, vec(•)表示矩阵的向量化操作, \otimes 表示 Kronecker 积,则式(3)的等价模型可以表示为:

$$\left(\begin{array}{c} \min_{\mathbf{x},\alpha} \sum_{l=1}^{L} \omega_{l} | \mathbf{x}^{\mathrm{H}} \mathbf{A}_{l} \mathbf{A}_{l}^{\mathrm{H}} \mathbf{x} - \alpha P_{l} |^{2} \\ \text{s. t.} | \mathbf{x}(k) | = 1, k = 1, 2, \cdots, MN \end{array}\right)$$
(4)

2 MIMO 雷达发射波形优化

2.1 算法描述

通过式(4)可以看出,目标函数是发射波形 x和尺度因子 α 的联合函数,为此可以采用循环算 法对其进行求解。发射波形 x 一定时,优化尺度 因子 α ;尺度因子 α 一定时,优化发射波形 x,直 至满足收敛条件。

2.1.1 x 固定时优化α

当 x 已知时,式(4)是关于 α 的无约束优化 问题,令目标函数的导数为 0 便可获得最优 α ,将 式(4)的目标函数记为:

$$f(\mathbf{x}, \alpha) = \sum_{l=1}^{L} \omega_l |\mathbf{x}^{\mathrm{H}} \mathbf{A}_l \mathbf{A}_l^{\mathrm{H}} \mathbf{x} - \alpha P_l|^2 =$$
$$\sum_{l=1}^{L} \omega_l \mathbf{x}^{\mathrm{H}} \mathbf{A}_l \mathbf{A}_l^{\mathrm{H}} \mathbf{x} \mathbf{x}^{\mathrm{H}} \mathbf{A}_l \mathbf{A}_l^{\mathrm{H}} \mathbf{x} -$$
$$2\alpha \sum_{l=1}^{L} \omega_l P_l \mathbf{x}^{\mathrm{H}} \mathbf{A}_l \mathbf{A}_l^{\mathrm{H}} \mathbf{x} + \alpha^2 \sum_{l=1}^{L} \omega_l P_l^2 \qquad (5)$$

Ŷ

$$\frac{\partial f(\mathbf{x}, \alpha)}{\partial \alpha} = -2 \sum_{l=1}^{L} \omega_l P_l \mathbf{x}^{\mathrm{H}} \mathbf{A}_l \mathbf{A}_l^{\mathrm{H}} \mathbf{x} + 2\alpha \sum_{l=1}^{L} \omega_l P_l^2 = 0$$
(6)

则最优的α值可以表示为:

$$\alpha = \frac{\sum_{l=1}^{L} \omega_l P_l \mathbf{x}^{\mathrm{H}} \mathbf{A}_l \mathbf{A}_l^{\mathrm{H}} \mathbf{x}}{\sum_{l=1}^{L} \omega_l P_l^2}$$
(7)

2.1.2
$$\alpha$$
 固定时优化 \mathbf{x}
 α 已知时,优化模型退化为:
 $\begin{cases} \min_{\mathbf{x}} f(\mathbf{x}) \\ \text{s.t.} |\mathbf{x}(k)| = 1, k = 1, 2, \cdots, MN \end{cases}$
(8)

$$\vec{\mathbf{x}} \quad \mathbf{\dot{\mathbf{p}}}, f(\mathbf{x}) = \sum_{l=1}^{L} \omega_l \mathbf{x}^{\mathsf{H}} \mathbf{A}_l \mathbf{A}_l^{\mathsf{H}} \mathbf{x} \mathbf{x}^{\mathsf{H}} \mathbf{A}_l \mathbf{A}_l^{\mathsf{H}} \mathbf{x} - 2\alpha \sum_{l=1}^{L} \omega_l P_l \mathbf{x}^{\mathsf{H}} \mathbf{A}_l \mathbf{A}_l^{\mathsf{H}} \mathbf{x} + \alpha^2 \sum_{l=1}^{L} \omega_l P_l^2 \circ$$

令 $\bar{X} = xx^{H}, \bar{A}_{l} = A_{l}A_{l}^{H}, 则式(8) 中目标函数$ 的第一项可以写为:

$$g(\mathbf{x}) = \sum_{l=1}^{L} \omega_{l} \mathbf{x}^{\mathsf{H}} \mathbf{A}_{l} \mathbf{A}_{l}^{\mathsf{H}} \mathbf{x} \mathbf{x}^{\mathsf{H}} \mathbf{A}_{l} \mathbf{A}_{l}^{\mathsf{H}} \mathbf{x} =$$

$$\sum_{l=1}^{L} \omega_{l} (\operatorname{vec}(\bar{\mathbf{X}}))^{\mathsf{H}} \operatorname{vec}(\bar{\mathbf{A}}_{l}) (\operatorname{vec}(\bar{\mathbf{A}}_{l}))^{\mathsf{H}} \operatorname{vec}(\bar{\mathbf{X}}) =$$

$$(\operatorname{vec}(\bar{\mathbf{X}}))^{\mathsf{H}} \sum_{l=1}^{L} \omega_{l} \operatorname{vec}(\bar{\mathbf{A}}_{l}) (\operatorname{vec}(\bar{\mathbf{A}}_{l}))^{\mathsf{H}} \operatorname{vec}(\bar{\mathbf{X}}) =$$

$$(\operatorname{vec}(\overline{X}))^{\mathrm{H}} A' \operatorname{vec}(\overline{X})$$
 (9)

式中,

$$\mathbf{A}' = \sum_{l=1}^{L} \boldsymbol{\omega}_{l} \operatorname{vec}(\overline{\mathbf{A}}_{l}) (\operatorname{vec}(\overline{\mathbf{A}}_{l}))^{\mathrm{H}} = \sum_{l=1}^{L} \boldsymbol{\omega}_{l} [\mathbf{b}_{1,1,l}^{\mathrm{H}}, \cdots, \mathbf{b}_{1,M,l}^{\mathrm{H}}, \cdots, \mathbf{b}_{N,M,l}^{\mathrm{H}}]^{\mathrm{H}} \cdot [\mathbf{b}_{1,1,l}^{\mathrm{H}}, \cdots, \mathbf{b}_{1,M,l}^{\mathrm{H}}, \cdots, \mathbf{b}_{N,M,l}^{\mathrm{H}}] = \mathbf{C}$$
(10)

式中, $b_{n,m,l} = e_n \otimes (a_l^*(m)a_l), 1 \leq m \leq M, 1 \leq n \leq N, a_l(m)$ 表示导向矢量的第 *m* 个元素, (•)*表示共轭操作, e_n 表示第*n* 个元素为1,其 余元素为0的*N*×1 维向量。*C* 为*M*²*N*²×*M*²*N*² 维的矩阵,其具体表达式为:

$$\boldsymbol{C} = \begin{bmatrix} C_{1,1}, & C_{1,2}, & \cdots, \\ \vdots & \vdots & \vdots \\ C_{MN,1}, & C_{MN,2}, & \cdots, \end{bmatrix}$$
(11)

式中,

 $C_{m+(n-1)M,m'+(n'-1)M} =$

$$\sum_{l=1}^{L} \boldsymbol{b}_{n,m,l} \boldsymbol{b}_{n',m',l}^{\mathrm{H}} =$$

$$\sum_{l=1}^{L} (\boldsymbol{e}_{n} \otimes (\boldsymbol{a}_{l}^{*}(m)\boldsymbol{a}_{l}))(\boldsymbol{e}_{n}' \otimes (\boldsymbol{a}_{l}^{*}(m')\boldsymbol{a}_{l}))^{\mathrm{H}} =$$

$$\sum_{l=1}^{L} (\boldsymbol{e}_{n} \boldsymbol{e}_{n}^{\mathrm{H}'}) \otimes ((\boldsymbol{a}_{l}^{*}(m)\boldsymbol{a}_{l})(\boldsymbol{a}_{l}^{*}(m')\boldsymbol{a}_{l})^{\mathrm{H}}) =$$

$$\boldsymbol{E}_{n,n'} \otimes \sum_{l=1}^{L} e^{j\pi(m'-m)\sin\theta_{l}} \hat{\boldsymbol{A}}_{l} \qquad (12)$$

其中,1 \leqslant *m* \leqslant *M*,1 \leqslant *n* \leqslant *N*,1 \leqslant *m*' \leqslant *M*,1 \leqslant *n*' \leqslant *N*,*E*_{*n*,*n*'}表示第(*n*,*n*')个元素为1,其余元素为0 的*N*×*N* 维矩阵, $\hat{A}_{l} = a_{l}a_{l}^{H}$ 。

式(8)的目标函数是关于发射波形的四次函数,为方便后续优化处理,需要对其进行化简。 最为有效的方法之一,便是采用 MM 算法^[18-19]寻 找合适的上界替代函数将其转化为发射波形的 二次函数, MM 算法是一类迭代算法,主要思想 是将一个比较复杂的优化问题转化为一系列易 于求解的具有闭式解的线性问题,在信号处理特 别是波形设计领域得到了广泛应用,引入以下 定理。

定理 $1^{[20]}$ 令矩阵 M 和 L 均为 $N \times N$ 的 Hermitian 矩阵, 且 $M \ge L$ 。那么对于任意的向 量 s 和 s_0 ,存在以下不等式:

$$s^{\mathrm{H}}Ls \leqslant s^{\mathrm{H}}Ms + 2\operatorname{Re}(s^{\mathrm{H}}(L-M)s_{0}) + s_{0}^{\mathrm{H}}(M-L)s_{0}$$
(13)

且当 $s = s_0$ 时,式(13)取等号,Re(•)表示取实部 操作。

利用定理1化简式(8)中目标函数的关键是 如何构造 A'的上界矩阵,常用的方法有 2 种:(1) 求解矩阵 A'的最大特征值 $\lambda_{max}(A')$,构建 M = $\lambda_{max}(\mathbf{A}')\mathbf{I}$,其中,**I**为相应维数的单位阵。该方 法构造的上界函数与原始函数的逼近程度较好。 然而,在无法利用闭式解获取最大特征值 $\lambda_{max}(A')$ 时,基于传统特征值分解方法求解 $\lambda_{max}(A')$ 的计 算复杂度非常大,而且在特殊情况下,由于 A'的 维数过高,对其进行存储都比较困难,更无从谈 及特征值分解运算。(2)利用矩阵 A'的迹^[21]构 造上界函数 $M = \kappa I$,其中, $\kappa = Tr(A'), Tr(\cdot)$ 表 示求矩阵的迹。该方法能够通过闭式解获得κ, 但是构造的上界函数过于"宽松",会严重影响后 续循环迭代的收敛效率。因此,研究一种新的构 造 A'上界矩阵的方法,既能减少计算量,又可以 很好地逼近A'。

定理 $2^{[22]}$ 假设 L 为 $N \times N$ 的 Hermitian 矩阵,则有 $M \ge L$, $M = \text{diag}(|L|e_N)$ 。其中, |L|表示对矩阵 L 的每个元素取模值, \hat{e}_N 为 $N \times 1$ 的全 1 向量, $\text{diag}(\cdot)$ 为将一个向量转化为 一个对角矩阵。

利用定理 2 可以构造 $M = \text{diag}(|A'|\hat{e}_{M^2N^2})$ 满足 $M \ge A'$,利用式(10)~(12)进一步对矩阵 M进行求解,给出更为简洁的表达式:

 $M = \operatorname{diag}(|A'|\hat{e}_{M^2N^2}) = \operatorname{diag}(\operatorname{vec}(\hat{R})) (14)$ 式中, $\hat{R} = I_N \otimes R$, $R \to M \times M$ 的对称 Toeplitz 矩 阵,因此 R 可由其第 1 行的元素唯一确定, 且 第 1 行的第 m 个元素为:

式中, $\overline{X}^{(p)} = x^{(p)} (x^{(p)})^{\mathrm{H}}, x^{(p)}$ 为 x 在第 p 次迭代的取值。

根据式(16),在忽略常数项后可以给出式(8)

在 p 次迭代的松弛优化模型为:

$$\begin{cases} \min_{\mathbf{x}} g'(\mathbf{x}, \mathbf{x}^{(p)}) - 2\alpha \sum_{l=1}^{r} \omega_l P_l \mathbf{x}^{\mathsf{H}} \overline{A}_l \mathbf{x} \\ \text{s. t.} \quad |\mathbf{x}(k)| = 1, k = 1, 2, \cdots, MN \end{cases}$$
(17)

为提升计算效率,需要对式(17)目标函数的 $g'(\mathbf{x},\mathbf{x}^{(p)})$ 进行化简,对于 $g'(\mathbf{x},\mathbf{x}^{(p)})$ 的第1项: $(\operatorname{vec}(\overline{\mathbf{X}}))^{\mathrm{H}} \mathbf{M} \operatorname{vec}(\overline{\mathbf{X}}) =$

 $\operatorname{Tr}[\boldsymbol{M}\operatorname{vec}(\boldsymbol{\bar{X}})(\operatorname{vec}(\boldsymbol{\bar{X}}))^{\mathrm{H}}] =$ $\operatorname{Tr}[\boldsymbol{M}(\boldsymbol{x}^{*} \otimes \boldsymbol{x})(\boldsymbol{x}^{\mathrm{T}} \otimes \boldsymbol{x}^{\mathrm{H}})] =$ $\operatorname{Tr}[\boldsymbol{M}(\boldsymbol{x}^{*} \boldsymbol{x}^{\mathrm{T}}) \otimes (\boldsymbol{x}\boldsymbol{x}^{\mathrm{H}})] =$

 $(\operatorname{vec}(\hat{\boldsymbol{R}}))^{\mathrm{T}}\operatorname{diag}[\operatorname{ddiag}(\boldsymbol{x}^{*}\boldsymbol{x}^{\mathrm{T}}) \otimes \operatorname{ddiag}(\boldsymbol{x}\boldsymbol{x}^{\mathrm{H}})] =$ $(\operatorname{vec}(\hat{\boldsymbol{R}}))^{\mathrm{T}}\hat{\boldsymbol{e}}_{M^{2}N^{2}} =$

$$N\sum_{i=1}^{M}\sum_{j=1}^{M}\boldsymbol{R}(i,j)$$
(18)

式中,ddiag(•)表示将一个对角矩阵的所有非对 角元素置 0,式(18)中倒数第 3 个等式转化为倒 数第 2 个等式,利用了发射波形 x 的恒模特性,因 此, $g'(x, x^{(p)})$ 的第 1 项为常数,与优化问题求解 无关,在后续优化中可以将其略去。

对于 $g'(x, x^{(p)})$ 的第 2 项可以通过以下两式 进行化简:

 $\operatorname{Re}\left[\left(\operatorname{vec}(\bar{\boldsymbol{X}})\right)^{\mathrm{H}}\boldsymbol{A}'\operatorname{vec}(\bar{\boldsymbol{X}}^{(p)})\right] = \\\operatorname{Re}\left[\left(\operatorname{vec}(\bar{\boldsymbol{X}})\right)^{\mathrm{H}}\sum_{l=1}^{L}\omega_{l}\operatorname{vec}(\bar{\boldsymbol{A}}_{l})\left(\operatorname{vec}(\bar{\boldsymbol{A}}_{l})\right)^{\mathrm{H}}\operatorname{vec}(\bar{\boldsymbol{X}}^{(p)})\right] = \\\operatorname{Re}\left[\sum_{l=1}^{L}\omega_{l}\left(\operatorname{vec}(\bar{\boldsymbol{X}})\right)^{\mathrm{H}}\operatorname{vec}(\bar{\boldsymbol{A}}_{l})\left(\operatorname{vec}(\bar{\boldsymbol{A}}_{l})\right)^{\mathrm{H}}\operatorname{vec}(\bar{\boldsymbol{X}}^{(p)})\right] = \\\operatorname{Re}\left[\sum_{l=1}^{L}\omega_{l}\boldsymbol{x}^{\mathrm{H}}\bar{\boldsymbol{A}}_{l}\boldsymbol{x}\left(\boldsymbol{x}^{(p)}\right)^{\mathrm{H}}\bar{\boldsymbol{A}}_{l}\boldsymbol{x}^{(p)}\right] = \\\\\operatorname{Re}\left[\sum_{l=1}^{L}\omega_{l}\boldsymbol{x}^{\mathrm{H}}\bar{\boldsymbol{A}}_{l}\boldsymbol{x}\left(\boldsymbol{x}^{(p)}\right)^{\mathrm{H}}\bar{\boldsymbol{A}}_{l}\boldsymbol{x}^{(p)}\right] = \\ (19)$

式中, $\boldsymbol{D} = \sum_{l=1}^{L} \omega_l \overline{\boldsymbol{A}}_l (\boldsymbol{x}^{(p)})^{\mathrm{H}} \overline{\boldsymbol{A}}_l \boldsymbol{x}^{(p)}$,最后一个等式去 掉 Re(•)的原因是 **D** 为 Hermitian 矩阵。

 $\operatorname{Re}\left[\left(\operatorname{vec}(\bar{\boldsymbol{X}})\right)^{\mathrm{H}}\boldsymbol{M}\operatorname{vec}(\bar{\boldsymbol{X}}^{(p)})\right] = \operatorname{Re}\left[\operatorname{Tr}(\boldsymbol{M}\operatorname{vec}(\bar{\boldsymbol{X}}^{(p)})(\operatorname{vec}(\bar{\boldsymbol{X}}))^{\mathrm{H}})\right] = \boldsymbol{x}^{\mathrm{H}}\boldsymbol{E}\boldsymbol{x}$ (2)

 $x^{H}Ex$ (20) 式中, $E = \hat{R} * \bar{X}^{(p)}$,最后一个等式去掉 Re(•)的 原因同样是 E 为 Hermitian 矩阵,"*"表示 Hadamard 积。

 $g'(\mathbf{x}, \mathbf{x}^{(p)})$ 的最后一项为常数,忽略常数项后,结合式(18)~(20),式(17)可以转化为:

$$\begin{cases} \min_{\mathbf{x}} \mathbf{x}^{\mathsf{H}} \mathbf{E}' \mathbf{x} \\ \text{s. t. } |\mathbf{x}(k)| = 1, k = 1, 2, \cdots, MN \end{cases}$$
(21)

式中, $E' = D' - E, D' = \sum_{l=1}^{L} \omega_l ((\mathbf{x}^{(p)})^{\mathsf{H}} \overline{A}_l \mathbf{x}^{(p)})$

 $\alpha P_l)\overline{A}_l$

式(21)是等式约束下的二次规划问题,可以 再次利用 MM 算法对其进行迭代求解,令 $T = diag(|D'|\hat{e}_{MN})$,根据定理 2 可以获得:

$$\boldsymbol{T} \ge \boldsymbol{D}' \ge \boldsymbol{E}' \tag{22}$$

再次利用定理1,可以获得式(8)在 p 次迭代 后的松弛优化模型为:

$$\begin{cases} \max_{\boldsymbol{x}} \boldsymbol{x}^{\mathrm{H}} \boldsymbol{u} \\ \text{s. t. } |\boldsymbol{x}(k)| = 1, k = 1, 2, \cdots, MN \end{cases}$$
(23)

式中, $u = (T + E - D')x^{(p)}$,在式(23)中忽略了部 分与优化问题无关的常数项。

因此,发射波形的最优值可以表示为:

$$\boldsymbol{x} = \mathrm{e}^{\mathrm{j} \cdot \mathrm{arg}(\boldsymbol{u})} \tag{24}$$

式中,arg(•)表示取相位操作。

上述推导仅仅完成了发射波形的一次迭代 更新,下面给出发射波形完整的求解方法,具体 算法流程见表1所列(这里用 *t* 表示外部循环迭 代标号,*p* 表示内部循环迭代标号)。

表 1 所提算法的具体流程

Tab. 1 The specific scheme of the proposed method

基于 CA 和 MM 算法的 MIMO 雷达发射波形优化 输入:发射阵元数目 M,编码长度 N,空域角度离散化个数 L,匹配误差加权系数 ω_l , $l=1,2,\dots,L$,期望方向图 P_l 输出:最优发射波形 x* 初始化: $x^{(t)}$,且t=0步骤 1 计算 $\hat{A}_l = a_l a_l^H, R, \sum_{l=1}^{L} \omega_l P_l^2$ 步骤 2 外循环操作 (2) 根据式(7)更新 α^(t) (3) $\Leftrightarrow p = 0, \mathbf{x}^{(t,p)} = \mathbf{x}^{(t-1)}$ (4) 内循环操作 ① 计算 $(\mathbf{D}')^{(\iota,p)} = \sum_{l=1}^{L} \omega_l ((x^{(\iota,p)})^{\mathsf{H}} \overline{A}_l x^{(\iota,p)} - \alpha^{(\iota)} P_l) \overline{A}_l$ ② 计算 $T^{(t,p)} = \text{diag}(|(D')^{(t,p)}|\hat{e}_{MN})$ ③ 计算 $E^{(t,p)} = \hat{R} \times \bar{X}^{(t,p)}$ ④ 根据式(24)更新 x^(t,p+1) (5) ◆*p*=*p*+1⑥ 判断是否满足收敛条件,如果是,内循环结束,令 $x^{(t)} = x^{(t,p)}$ 并转入(5);如果否,转入④ (5) 判断是否满足收敛条件,如果是,外循环结束,转入 步骤 3;如果否,转入(1)

步骤 3 $x^* = x^{(t)}$

2.2 收敛性分析

对于内部循环迭代,由于采用 MM 算法框

架,定理1保证了优化目标函数满足以下不等式:

 $f(\boldsymbol{x}^{(t+1)},\boldsymbol{\alpha}^{(t)}) \leqslant f(\boldsymbol{x}^{(t)},\boldsymbol{\alpha}^{(t)})$ (25)

对于外部循环迭代,根据式(6)可知,式(7)为 目标函数取得最小值的最优尺度因子,因此存在 以下不等式成立:

 $f(\mathbf{x}^{(t+1)}, \alpha^{(t+1)}) \leqslant f(\mathbf{x}^{(t+1)}, \alpha^{(t)})$ (26) 结合式(25)和式(26)有 $f(\mathbf{x}^{(t+1)}, \alpha^{(t+1)}) \leqslant$ $f(\mathbf{x}^{(t)}, \alpha^{(t)}),$ 所以能够确保目标函数的下降特 性。另外,由于目标函数式(5)存在理论下界,因 此本文所提算法能够收敛到某个稳定的局部最 优解,即算法的收敛性得到了保证。

2.3 计算复杂度分析

本文算法的计算量主要集中于更新尺度因 子 α 和发射波形向量 x,其中更新 α 所需的计算 复杂度为O(MNL)。每次迭代更新 x 主要包括 求解D'所需的计算复杂度为 $O(MNL + M^2L)$; 求解D'x的计算复杂度为 $O(M^2N)$;求解Ex 的 计算复杂度为O(MN);求解Tx 计算复杂度为 O(MN)。另外,求解矩阵 R 的计算复杂度为 $O(4ML + 2M^2)$ 。假设整个算法的内部迭代数目 为 N_1 ,外部迭代数目为 N_0 ,所提算法的计算复 杂度为 $O(N_0N_1(MNL + M^2L + M^2N))$ 。

3 仿真分析

本部分利用仿真实验来说明所提方法的有效性。考虑一相干 MIMO 雷达,其发射阵列为均匀线性阵列,阵元间距为半波长,空域[-90°,90°]的离散化个数为181,离散化间隔为1°。

假设 MIMO 雷达的发射阵元数目为 M = 20,每个发射脉冲的编码长度为 32,期望发射方向图为:

 $P_{l} = \begin{cases} 1, l \in [41, 61] \cup [81, 101] \cup [121, 141] \\ 0, \notin \mathbb{C} \end{cases}$

(27)

匹配误差加权系数 $\omega_l = 1, l = 1, 2, \dots, L, 本$ 文算法的波形初始值采用随机方式产生,收敛条 件设置为:内外循环中相邻迭代步目标函数的相 对变化值小于 10^{-4} 。为便于说明所提方法的优 越性,分别与文献[10]的半正定二次规划(semidefinite quadratic programming, SQP)算法、文 献[9]的 ADMM 算法和文献[11]的 CA 算法进 行比较,蒙特卡罗实验的次数设为 50。所有的程 序均在相同的计算机上运行,具体配置参数为: Intel(R) Core(TM)i5-9400CPU@2.9 GHz 处理器,16 GB内存,64 位操作系统。

所提方法的收敛性能如图 1 所示,从图 1 中 可以看出,方向图的匹配误差呈现出了单调下降 的变化特性,这说明本文方法能够保证目标函数 收敛到一个局部最优解,与理论分析一致。另 外,根据图 1 可知,达到符合收敛条件仅需 110 次 迭代,这也表明了本文方法具备较快的收敛速度 和较高的运算效率。

图 1 所提方法的收敛性能

Fig. 1 The convergence performance of the proposed method

图 2 为不同方法优化所得发射方向图。从图 2 中可以看出,4 种方法优化所得方向图均能与 期望方向图进行较好的匹配,为进一步对各方法 进行精确比较,分别用方向图的匹配误差(具体 见式(28)和式(29))和运算时间 2 类指标对不同 方法的性能进行衡量,其中,r=1,2,...,R,R 为 蒙特卡罗次数。

$$M_{\rm MSE} = \frac{1}{L} \sum_{l=1}^{L} \omega_l (\hat{P}_l - P_l)^2 \qquad (28)$$

$$\begin{cases} M_{\text{MSE,ave}} = \frac{1}{R} \sum_{r=1}^{R} M_{\text{MSE}_{r}} \\ M_{\text{MSE,min}} = \min \sum_{r=1,\dots,R} M_{\text{MSE}_{r}} \end{cases}$$
(29)

图 3 给出了 50 次仿真实验的方向图匹配误 差曲线,其中 SQP 方法具有最优的性能,本文方 法和 ADMM 算法次之,最差的为 CA 算法。SQP 算法的优化对象为发射波形的协方差矩阵,并不 涉及实际具体波形的求解,因而优化空间更大, 性能最优。CA 算法是在 SQP 的基础上,考虑了 协方差矩阵匹配下的恒模发射波形合成问题,由 于优化模型无法直接与发射方向图关联,因而性 能最差,本文方法与 ADMM 算法的性能近似相 同,具体性能见表 2 所列。从运行时间上来看,本 文方法的运行时间约为 0.65 s,所需时间最短,相 比 SQP 算法和 CA 算法降低了 1 个数量级,相对 ADMM 算法下降了 2 个数量级,因而本文方法的 综合性能最优。ADMM 算法运行时间长的原因 是,每步迭代都涉及到矩阵求逆问题,因此计算 复杂度较高。

表 2 不同优化方法的性能比较

Tab. 2	The performan	e comparison	of different	algorithms
--------	---------------	--------------	--------------	------------

算 法	$M_{ m MSE,min}$	$M_{ m MSE, ave}$	时间/s
本文方法	0.014 2	0.014 3	0.650 2
SQP	0.013 2	0.013 2	8.340 5
СА	0.014 9	0.015 4	9.655 0
ADMM	0.014 1	0.014 2	134.986 9

为了进一步说明本文方法在发射方向图设 计上的灵活性,考虑以下2种情况:(1)设置匹配 误差加权系数在主瓣区域始终为1,在旁瓣区域 的值不同,即 $\omega_l = w_0$ 。通过图4可以看出,在主 瓣区域匹配误差加权系数不变的前提下,旁瓣区 域不同的加权值会形成不同的发射方向图,随着 旁瓣区域匹配误差加权系数的不断增加,优化模 型对旁瓣电平的约束更为严苛,相应的旁瓣优化 电平也在不断降低;相反,在旁瓣区域匹配误差 加权系数比较小时,优化模型更加强调主瓣区域 的匹配程度,所以主波束具有更优的纹波特性, 这也说明了本文方法可以根据不同的应用需求 合理地设计所需方向图,因此具有较好的灵活 性。(2)考虑到具有零陷约束的方向图匹配问 题,设置期望方向图在[-20° , 20°]实现功率聚 焦,在[-60° , 50°]处形成-40 dB零陷,以抑制相 应的空间干扰。

图 5 为零陷约束下不同方法优化所得方向 图。从图 5 中可以看出,SQP 算法能够获得最低 的旁瓣电平和最低的零陷深度,可将其作为其他 方法的比较对象。对于本文方法、ADMM 方法 和 CA 算法而言,CA 算法在干扰方向形成的零 陷深度最高,基本没有形成零陷,主要原因是 CA 算法无法直接以方向图匹配性能为目标函数优 化发射波形,本质上属于间接优化算法,因而与 直接算法(ADMM 算法、本文方法)相比,在方向 图某些细微特征的严格控制上还有差距。虽然 ADMM 算法与本文算法均属于直接优化方法, 但就峰值旁瓣电平和干扰方向的零陷深度而言, ADMM 算法性能要差于本文算法,主要原因是 ADMM 算法涉及多个人工辅助参数的设置问 题,在一定程度上影响了优化性能的提升。

图 5 零陷约束下不同方法优化所得发射方向图 Fig. 5 Transmit beampattern synthesized by different algorithms with nulling constraints

4 结束语

在已知目标分布空域的基础上合理设计发 射方向图,能够使发射功率在目标分布空域进行 有效聚焦,提升接收阵列目标回波的信噪比,改 善目标的检测和参数估计性能。为此,本文开展 了期望方向图匹配下的发射波形直接优化算法 研究。构建了恒模约束下发射波形的四次优化 模型,提出了一种基于 CA 算法和 MM 算法的联 合求解方法。通过合理构建上界替代函数,每次 迭代过程中均能利用 MM 算法将原始高度非凸 问题转化为具有闭式解的线性规划问题,因而所 提算法计算复杂度较低,另外由于利用 MM 算法 框架,本文算法具有稳定的单调下降特性,能够 确保收敛到局部最优解。最后仿真实验表明,本 文方法对于多峰方向图设计问题和零陷约束下 的宽波束匹配问题均能进行有效解决,相比现有 恒模波形设计的主流算法(CA 算法、ADMM 算 法等),本文方法在方向图匹配性能和运算效率 方面具有综合的最优性能。特别是运算时间,同 等条件下本文方法比现有方法降低了1~2个数 量级。

参考文献

- [1] 何子述,程子扬,李军,等.集中式 MIMO 雷达研究综述[J].雷达学报,2022,11(5):805-829.
 HE Zishu, CHENG Ziyang, LI Jun, et al. A survey of collocated MIMO radar [J]. Journal of Radars, 2022, 11(5): 805-829. (in Chinese)
- [2] 唐波,汤俊,胡元奎.基于 MIMO 阵列的综合射频系统 技术研究[J].信息对抗技术,2022,1(1):62-72.

TANG Bo, TANG Jun, HU Yuankui. Multifunction radio frequency systems based on MIMO array[J]. Information Countermeasure Technology, 2022, 1(1): 62-72. (in Chinese)

- [3] 程子扬,何子述,王智磊,等.分布式 MIMO 雷达目标 检测性能分析[J].雷达学报,2017,6(1):81-89.
 CHENG Ziyang, HE Zishu, WANG Zhilei, et al. Detection performance analysis for distributed MIMO radar[J]. Journal of Radars, 2017,6(1):81-89.(in Chinese)
- [4] 陈晨,张小飞,李建峰.波形相关矩阵未知情况下单基地 MIMO 雷达中一种改进 MUSIC 的 DOA 估计算法
 [J].电子与信息学报,2012,34(12):2966-2971.
 CHEN Chen, ZHANG Xiaofei, LI Jianfeng. An improved MUSIC DOA estimation algorithm for monostatic MIMO radar without knowledge of waveforms correlated matrix[J]. Journal of Electronics& Information Technology, 2012, 34(12): 2966-2971. (in Chinese)
- [5] WU K, ZHANG J A, HUANG X, et al. Waveform design and accurate channel estimation for frequencyhopping MIMO radar based communications[J]. IEEE Transactions on Communications, 2021, 69(2): 1244-1258.
- [6] ZHANG B, DAI F Z. Spatial-temporal waveform design for MIMO radar without approximating the covariance matrix[J]. IET Radar Sonar and Navigation, 2020, 14(3): 381-387.
- [7] YU X X, CUI G L, YANG J, et al. MIMO radar transmit-receive design for moving target detection in signal-dependent clutter [J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 522-536.
- [8] TANG B, ZHANG Y, TANG J. An efficient minorization maximization approach for MIMO radar waveform optimization via relative entropy[J]. IEEE Transactions on Signal Processing, 2018, 66 (2): 400-411.
- [9] CHENG Z, HE Z, ZHANG S, et al. Constant modulus waveform design for MIMO radar transmit beampattern[J]. IEEE Transactions on Signal Processing, 2017, 65(18): 4912-4923.
- [10] STOICA P, LI J, XIE Y. On probing signal design for MIMO radar [J]. IEEE Transactions on Signal Processing, 2007, 55(8): 4151-4161.
- [11] STOICA P, LI J, ZHU X. Waveform synthesis for diversity-baseed transmit beampattern design [J].
 IEEE Transactions on Signal Processing, 2008, 56(6): 2593-2598.
- [12] FUHRMANN D R, ANTONIO G S. Transmit beam-

forming for MIMO radar systems using partial signal correlation[C] //Proceedings of IEEE Conference Record of the 38 Asilomar Conference. on Signals, Systems & Computers. New York, USA: IEEE, 2004: 295-299.

- [13] AHMED S, THOMPSON J S, PETILLOT Y R, et al. Unconstrained synthesis of covariance matrix for MIMO radar transmit beampattern[J]. IEEE Transactions on Signal Processing, 2011, 59 (8): 3837-3849.
- [14] STOICA P, LI J, ZHU X M, et al. Waveform synthesis for diversity-based transmit beampattern design [C]// Proceedings of IEEE/SP 14th Workshop on Statistical Signal Processing. [S.l.:s.n.], 2007: 473-477.
- [15] FAN G C, DENG W B. MIMO radar transmit beampattern synthesis based on genetic algorithm [C]// Proceedings of the 5th Global Symposium on Millimeter Waves. [S. l. :s. n.], 2012: 445-448.
- [16] WANG Y C, WANG X, LIU H W, et al. On the design of consant modulus probing signals for MIMO radar [J]. IEEE Transactions on Signal Processing, 2012, 60(8): 4432-4438.
- [17] ALDAYEL O, MONGA V, RANGASWAMY M.

Tractable transmit MIMO beampattern design under a constant modulus constraint [J]. IEEE Transactions on Signal Processing, 2017, 65(10): 2588-2599.

- [18] HUNTER D R, LANGE K. A tutorial on MM algorithms[J]. The American Statistician, 2003, 58(1): 30-37.
- [19] SONG J, BABU P, PALOMAR D P. Optimization methods for designing sequences with low autocorrelation sidelobes[J]. IEEE Transactions on Signal Processing, 2015, 63(15): 3998-4009.
- [20] SONG J X, BABU P, PalomarD P. Sequence set design with good correlation properties via majorizationminimization[J]. IEEE Transactions on Signal Processing, 2016, 64(11): 2866-2879.
- [21] HUANG Z R, TANG B, HUANG C, et al. Direct transmit waveform design to match a desired beampattern under the constant modulus constraint[J]. Digital Signal Processing, 2022, 126: 103486.
- [22] HUANG Z R, SHI Y C, TANG B, et al. Unimodular multiple-input-multiple-output radar wave-form design with desired correlation properties [J]. IET Radar, Sonar & Navigation, 2022, 16(3): 412-425.

责任编辑 安 蓓